Feature Selection and Occupancy Classification Using Seismic Sensors
نویسندگان
چکیده
In this paper†, we consider the problem of indoor surveillance and propose a feature selection scheme for occupancy classification in an indoor environment. The classifier aims to determine whether there is exactly one occupant or more than one occupant. Data are obtained from six seismic sensors (geophones) that are deployed in a typical building hallway. Four proposed features exploit amplitude and temporal characteristics of the seismic time series. A neural network classifier achieves performance ranging between 77% to 95% on the test data, depending on the type of construction of the location in the building being monitored.
منابع مشابه
Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملMulti-sensory Features for Personnel Detection at Border Crossing
Personnel detection at border crossing becomes an important issue recently. To reduce the false alarm caused by nonhuman animals or the existence of multiple objects, it is important to discriminate between humans and nonhuman animals. In this paper, based on phenomenology of the differences between humans and four-legged animals, we propose using enhanced autocorrelation pattern for feature ex...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کامل